일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- backward
- Numpy
- kakao
- algorithm
- que
- Sigmoid
- SQL
- DeepLearning
- hash
- 신경망
- 딥러닝
- boj
- Word2vec
- Programmers
- 파이썬
- MySQL
- skip-gram
- dl
- affine
- Heap
- 자연어처리
- stak
- PPMI
- FullyConnectedLayer
- Python
- select
- 프로그래머스
- Stack
- sort
- CBOW
Archives
- Today
- Total
혜온의 이것저것
[HackerRank] Average Population of Each Continent (MySQL) 본문
Data Analysis/SQL
[HackerRank] Average Population of Each Continent (MySQL)
혜온 :) 2022. 8. 29. 15:19https://www.hackerrank.com/challenges/average-population-of-each-continent/problem?isFullScreen=true
문제
Given the CITY and COUNTRY tables, query the names of all the continents (COUNTRY.Continent) and their respective average city populations (CITY.Population) rounded down to the nearest integer.
Note: CITY.CountryCode and COUNTRY.Code are matching key columns.
Input Format
The CITY and COUNTRY tables are described as follows:
풀이
select c2.continent, floor(avg(c1.population))
from city c1, country c2
where c1.countrycode = c2.code
group by c2.continent
'Data Analysis > SQL' 카테고리의 다른 글
[HackerRank] Top Competitors (MySQL) (0) | 2022.09.06 |
---|---|
[HackerRank] The Report (MySQL) (0) | 2022.08.29 |
[HackerRank] African Cities (MySQL) (0) | 2022.08.29 |
[HackerRank] Population Census (MySQL) (0) | 2022.08.29 |
[HackerRank] Weather Observation Station 20 (MySQL) (0) | 2022.08.22 |
Comments